Adversarial Learning With Knowledge of Image Classification for Improving GANs
نویسندگان
چکیده
منابع مشابه
Attention-Aware Generative Adversarial Networks (ATA-GANs)
In this work, we present a novel approach for training Generative Adversarial Networks (GANs). Using the attention maps produced by a TeacherNetwork we are able to improve the quality of the generated images as well as perform weakly object localization on the generated images. To this end, we generate images of HEp-2 cells captured with Indirect Imunofluoresence (IIF) and study the ability of ...
متن کاملGANs for LIFE: Generative Adversarial Networks for Likelihood Free Inference
We introduce a framework using Generative Adversarial Networks (GANs) for likelihood–free inference (LFI) and Approximate Bayesian Computation (ABC). Our approach addresses both the key problems in likelihood–free inference, namely how to compare distributions and how to efficiently explore the parameter space. Our framework allows one to use the simulator model as a black box and leverage the ...
متن کاملAdversarial Multi-task Learning for Text Classification
Neural network models have shown their promising opportunities for multi-task learning, which focus on learning the shared layers to extract the common and task-invariant features. However, in most existing approaches, the extracted shared features are prone to be contaminated by task-specific features or the noise brought by other tasks. In this paper, we propose an adversarial multi-task lear...
متن کاملGang of GANs: Generative Adversarial Networks with Maximum Margin Ranking
Traditional generative adversarial networks (GAN) and many of its variants are trained by minimizing the KL or JS-divergence loss that measures how close the generated data distribution is from the true data distribution. A recent advance called the WGAN based on Wasserstein distance can improve on the KL and JS-divergence based GANs, and alleviate the gradient vanishing, instability, and mode ...
متن کاملKBGAN: Adversarial Learning for Knowledge Graph Embeddings
We introduce an adversarial learning framework, which we named KBGAN, to improve the performances of a wide range of existing knowledge graph embedding models. Because knowledge graph datasets typically only contain positive facts, sampling useful negative training examples is a non-trivial task. Replacing the head or tail entity of a fact with a uniformly randomly selected entity is a conventi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2913697